Makki K, Deehan EC, Walter J, Bäckhed F. The impact of dietary fiber on gut microbiota in host health and disease. Cell Host Microbe. 2018;23(6):705–715. doi:10.1016/j.chom.2018.05.012
Sun L, Chi J, Qi M, et al. Dietary fiber improves gut health in a mouse model of colitis. J Nutr Biochem. 2021;95:108728. doi:10.1016/j.jnutbio.2021.108728
Cronin P, Joyce SA, O’Toole PW, O’Connor EM. Dietary Fibre Modulates the Gut Microbiota. Nutrients. 2021;13(5):1655. doi:10.3390/nu13051655
Fu J, Zheng Y, Gao Y, Xu W. Dietary Fiber Intake and Gut Microbiota in Human Health. Microorganisms. 2022;10(12):2507. doi:10.3390/microorganisms10122507
Navruz-Varli S, Sanlier N. Nutritional and Health Benefits of Quinoa (Chenopodium quinoa Willd.). Journal of Cereal Science. 2021;100:103246. doi:10.1016/j.jcs.2021.103246
Li Y, Shi H. Naringin ameliorates colitis in mice by modulating gut microbiota. Frontiers in Nutrition. 2022;9:922345. doi:10.3389/fnut.2022.922345
Giezenaar C, Luscombe-Marsh ND, Hutchison AT, et al. Effect of short- and long-term protein consumption on appetite and gastrointestinal hormones involved in appetite regulation: a systematic review and meta-analysis. Appetite. 2020;154:104709. doi:10.1016/j.appet.2020.104709
Gonçalves C, Fernandes D, Silva I, Mateus V. Potential Anti-Inflammatory Effect of Rosmarinus officinalis in Preclinical In Vivo Models of Inflammation. Molecules. 2022;27(3):609. doi:10.3390/molecules27030609
7. Monteleone E, Di Renzo L, Biasini B, et al. Cooking at Home and Adherence to the Mediterranean Diet During COVID-19: Insights from a Cross-Sectional Study. Frontiers in Nutrition. 2021;8:617721. doi:10.3389/fnut.2021.617721
Akhlaghi M. The role of dietary fibers in regulating appetite: An overview of mechanisms and weight consequences. Journal of Nutrition and Health Sciences. 2022;9(2):115.
Anhê FF, Nachbar RT, Varin TV, et al. Treatment with Camu Camu (Myrciaria dubia) prevents obesity by altering the gut microbiota and increasing energy expenditure in diet-induced obese mice. Gut. 2019;68(3):453–464. doi:10.1136/gutjnl-2017-315565
Abot A, Brochot A, Pomié N, et al. Camu-Camu reduces obesity and improves diabetic profiles of obese and diabetic mice: a dose-ranging study. Metabolites. 2022;12(4):301. doi:10.3390/metabo12040301
你知道嗎?別小看卡姆果,這顆亞馬遜超級果富含維生素 C 與多酚,就像在細胞發電廠裡裝上渦輪增壓器,雙管齊下推動新陳代謝。根據最新綜述,卡姆果提取物能顯著提升體內脫氧膽酸與熊去氧膽酸等主要膽汁酸濃度,進而啟動TGR5受體,增強非顫抖性熱產生,讓棕色脂肪細胞燃燒更多熱量【註5】。同時,其花青素與楊梅素等多酚成分可誘導Nrf2信號活化,強化線粒體抗氧化防禦,改善胰島素敏感度與葡萄糖利用率,協助脂肪更有效分解【註6】。這兩大機制就像料理中同時加入辣椒與胡椒,既提味又增香,讓代謝層次更豐富。然而,目前相關研究多為動物與細胞模型,仍缺乏人體臨床驗證;若忽略劑量或體質差異,可能產生腸胃不適或過敏反應。建議在專業指導下,搭配均衡飲食與規律運動,才能安全獲益,真正發揮卡姆果在「減脂瘦身」上的協同效果。
Abot A, Brochot A, Pomié N, et al. Camu-Camu reduces obesity and improves diabetic profiles of obese and diabetic mice: a dose-ranging study. Metabolites. 2022;12(4):301.
An Amazonian Fruit with Biofunctional Properties–A Review. ACS Omega. 2022;7(30):27279–27290. doi:10.1021/acsomega.2c07245
Anhê FF, Nachbar RT, Varin TV, et al. Treatment with Camu Camu (Myrciaria dubia) prevents obesity by altering the gut microbiota and increasing energy expenditure in diet-induced obese mice. Gut. 2019;68(3):453–464. doi:10.1136/gutjnl-2017-315565
Melo MG, et al. Camu Camu (Myrciaria dubia): An Amazonian Fruit with Biofunctional Properties – A Review. ACS Omega. 2022;7(30):27279–27290. doi:10.1021/acsomega.2c07245
García-Chacón JM, Marín-Loaiza JC, Osorio C. Camu camu (Myrciaria dubia (Kunth) McVaugh): an amazonian fruit with biofunctional properties – A review. ACS Omega. 2023;8(6):5169–5183. [https://doi.org/10.1021/acsomega.2c07245]
Do NQ, Zheng S, Park B, et al. Camu-Camu Fruit Extract Inhibits Oxidative Stress and Inflammatory Responses by Regulating NFAT and Nrf2 Signaling Pathways in High Glucose-Induced Human Keratinocytes. Molecules. 2021;26(11):3174. [https://doi.org/10.3390/molecules26113174]
Camu Camu Prebiotic and Immune Checkpoint Inhibition in Patients (preliminary trial). NCBI PMC. 2022;PMCID: PMC9933082.
Camu Camu – Uses, Side Effects, and More. WebMD. Accessed 2025.